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Abstract

This paper develops a closed-form solution for the population-balance equations describing the dissolution of polydisperse mixtures of
spherical particles in the presence of external mass-transfer resistance. The general case, obtained by relaxing the assumption of an excess
concentration of fluid reactants, is also considered. In mathematical terms, this leads to a nonlinear first-order functional equation that can
be solved by making use of a warped-time transformation. The inclusion of the fragmentation dynamics of solid particles occurring during
the chemical dissolution process is also briefly addressed.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The kinetics of the leaching and dissolution of powdered
materials has mainly been examined with reference to a
uniform average particle diameter. For nonporous material,
classical shrinking-core models have been widely applied to
describe the kinetics of leaching processes [1–6].

If the reacting unit is to be scaled up correctly and an
accurate distinction drawn between kinetic effects and the
structural properties of the solid particles, it is important that
nonuniformities in particle size be taken into account. This
means that a particle mixture should be described by means
of a distribution function (strictly speaking a nonnormalized
probability density function) labeled continuously with re-
spect to the particle size (usually the particle radius) and
satisfying a population-balance equation [7,8] that takes into
account particle shrinking due to dissolution and, if neces-
sary, other physico-chemical phenomena modifying particle
size, such as fragmentation.

An in-depth discussion of the numerical methods for
approaching population balances—not for dissolution ki-
netics but for other phenomenologies such as aggregation,
nucleation and break-up—is developed by Kumar and
Ramkrishna [9–11].
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Despite the fact that the dissolution of powdered materials
falls into the natural realm of application of population bal-
ances and that the assumption of uniform particle size may
lead to severe kinetic misinterpretation of the dissolution
process, and hence to grossly inappropriate scale-up analy-
ses in the presence of a broad distribution of particle radii
[15], very few papers make use of this approach [12–16].
Sepulveda and Herbst [12], and Crundwell and Bryson [14]
apply population balances in the analysis of flow reactors at
a steady state.

In a series of two papers, Le Blanc and Fogler [15,16]
analyze the effects of polydispersity of solid-particle sizes
in the batch-dissolution kinetics of powdered minerals. The
investigation essentially covers two cases corresponding to
kinetic and external film control, assuming a large surplus
of fluid reactants and applying particular functional forms
of the initial particle-size distribution.

The dissolution kinetics of a polydisperse mixture gives
rise mathematically to a first-order partial differential equa-
tion for the particle distribution function. We show in this
paper that a closed-form solution for this equation can be
obtained under fairly general conditions (more general than
the cases analyzed by Le Blanc and Fogler) in mixed regimes
and for any initial particle size distribution. We also pro-
vide a systematic analysis of population-balance equations in
leaching processes by relaxing the assumption of excess fluid
reactants. The case of fragmentation processes occurring
during the dissolution process is also addressed in passing.
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Nomenclature

a(x) fragmentationrate
b(x; y) numberof fragments of radiusx

generated by a particle of radiusy
cA bulkphase solvent concentration
cA,0 initialsolvent concentration
cA,s surfacesolvent concentration
D diffusioncoefficient
km mass-transfercoefficient
kr dissolutionrate constant
k̃r νAkr/Mw,s
Mw,s molecularweight of solid reactant
n reactionorder
n(x, θ) particledistribution function
ñ(x, s) Laplacetransform ofn(x, θ)
n0(x) initialparticle distribution function
ns,0 numberof moles of solid initially present
r particleradius
rref referenceparticle radius
rv definedby Eq. (2.5)
Re Reynoldsnumber
s Laplacevariable
Sc Schmidtnumber
Sh Sherwoodnumber
t time
v characteristicfluid velocity
Vr reactorvolume
x r/rref, dimensionless radius
xD definedby Eq. (2.7)
xv rv/rref, see Eq. (2.4)
x∗(θ) peaklocation of the distributionn(x, θ)

at timeθ

X conversion
yA cA/cA,0

Greek symbols
γA solid-to-liquidstoichiometric loading ratio
ν kinematicviscosity
νA stoichiometriccoefficient of solvent A
ω dx/dθ
ρs soliddensity
τ reactiontime, Eq. (2.7)
τw warpedtime, defined by Eq. (5.2)
θ dimensionlesstime

This paper is organized as follows. Section 2 describes
the physical modeling of the process and introduces the re-
sulting population-balance equation. Section 3 develops the
closed-form solution in the case of a large surplus of fluid
reactants. Section 4 analyzes several examples for different
dissolution regimes and for several forms of model kinetics.
Section 5 addresses the solution of the population-balance
equation in the case where there is no large surplus of

fluid reactant. In this case, the population-balance equation
becomes nonlinear and can be formally solved by means
of a suitable warped-time transformation. Finally, the con-
cluding section briefly addresses the formal setting of the
population-balance equations in the case where fragmenta-
tion processes of solid particles are also taken into account.

2. Statement of the problem

Let us consider the isothermal batch-dissolution process
of a mixture of nonporous solid particles of spherical shape
on the assumption that there is only one limiting reactant
A, and that the dissolution kinetics is elementary of order
n, i.e. r(cA) = krc

n
A. This means that the dissolution of a

generic particle follows the equation:

dr

dt
= −krc

n
A,s

ρs
, (2.1)

wherer is the particle radius. The surface concentrationcA,s
can be obtained by enforcing film theory, i.e. the equality
between the flux across the boundary layer and the rate of
consumption due to surface kinetics. Let

Solid+ νAA → Products (2.2)

be the stoichiometric equation describing dissolution, and
let us assume that products dissolve in the liquid phase. For
a first-order kinetics1 (n = 1), the surface concentration
cA,s is given by

cA,s =
(

1 + k̃r

km

)−1

cA , (2.3)

wherecA is the bulk fluid concentration,̃kr = νAkr/Mw,s,
andkm the mass-transfer coefficient, which can be expressed
by means of the classical correlation for spherical objects:

km = D

2r
Sh = D

2r
(2 + a Sc1/3 Re1/2)

= D

2r

[
2 + a Sc1/3

(
2rv

ν

)1/2
]

= D

2r

[
2 +

(
r

rv

)1/2
]
,

(2.4)

wherea = 0.6 and

rv = ν

2a2 Sc2/3 v
. (2.5)

By making use of Eqs. (2.3)–(2.5) and by defining the di-
mensionless radiusx = r/rref, whererref is some reference
value (to be specified below), Eq. (2.1) attains the following
form for n = 1:

dx

dθ
= −yA

[
1 + x

xD(2 + √
x/xv)

]−1

, (2.6)

1 The case of a nonlinear kinetics is addressed in Section 4.
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where

yA = cA

cA,0
, τ = ρsrref

krcA,0
, θ = t

τ
,

xD = D

2k̃rrref
, xv = rv

rref
. (2.7)

The dimensionless quantityxv admits the meaning of the
reciprocal of an effective Reynolds number referred to the
radius rref, while xD can be viewed as the reciprocal of
the surface square Thiele modulus.

In the case of polydisperse mixtures of spherical parti-
cles undergoing chemical dissolution, the balance equation
(which is usually referred to as a population balance) for the
distribution functionn(x, θ) (n(x, θ)dx is the number of
particles possessing a dimensionless radius betweenx and
x + dx), is given by

∂n(x, θ)

∂θ
+ ∂[ω(x, yA)n(x, θ)]

∂x
= 0, (2.8)

where

ω(x, yA) = dx

dθ
= −yA

[
1 + x

xD(2 + √
x/xv)

]−1

= yAω0(x), (2.9)

equipped with the initial condition:

n(x,0) = n0(x). (2.10)

Two cases should be discussed separately.
Case a: There is a large surplus of reactant A. This means

that yA 	 1 and the “velocity”ω entering into Eq. (2.8)
depends exclusively onx, i.e.

ω = ω0(x), (2.11)

and the population-balance equation (2.8) is therefore, lin-
ear inn(x, θ). Le Blanc and Fogler [15] address this case
exclusively for a first-order reaction. In particular, the case
ω(x) = −1 corresponds to a kinetics controlled by sur-
face reaction, while forxv → ∞, ω(x) = −(1+ x/2xD)−1

describes dissolution under creeping-flow conditions [16].
Case b: There is no surplus of the reactant A. It follows

from stoichiometric equation (2.2) that

yA(θ) = 1 − γA

[
1 −

∫∞
0 x3n(x, θ)dx∫∞
0 x3n0(x)dx

]
, (2.12)

whereγA = νAns,0/VrcA,0, Vr is the reactor volume, takes
into account the loading ratio of the solid and the fluid
reactant. In this case, the population-balance equation is
nonlinear inn(x, θ) due to the dependence ofyA(θ) on the
overall mass of the solid mixture at timeθ . It is important to
observe that this nonlinear contribution depends exclusively
on an integral functional ofn(x, θ).

The solution of Eq. (2.8) in Case (a) will be developed in
the following section, while Section 5 tackles the solution
in Case (b).

It is useful to observe that the overall quantities describing
the extent of the reaction are linear functionals ofn(x, θ). In
particular, the conversionX is proportional to the third-order
moment of the distribution

X(θ) = 1 −
∫∞

0 x3n(x, θ)dx∫∞
0 x3n0(x)dx

, (2.13)

while the wetted surface area per unit massθ is proportional
to the second-order moment.

3. Closed-form solution

The analysis of Eq. (2.8) in the case of kinetic control
and in the mass-transfer controlled case (foryA = 1) is de-
veloped by Le Blanc and Fogler [15,16] for some particular
initial distributionsn0(x), and essentially for a log-normal
distribution.

It is indeed possible to obtain a formal solution of Eq. (2.8)
in the more general case and for generic initial distribu-
tions. This section briefly addresses this issue by consider-
ing a first-order reactionn = 1 on the assumptionyA = 1
(Case a). The solution of this case is the starting point for
obtaining the general solution in the case of nonlinear ki-
netics (Section 4) and in Case b (Section 5).

Under this hypothesis, Eq. (2.8) is linear inn(x, θ) and it
is convenient to introduce the Laplace transformn̂(x, s) of
the distribution function:

n̂(x, s) =
∫ ∞

0
n(x, θ)e−sθ dθ, (3.1)

so that Eq. (2.8) becomes

sn̂(x, s) − n0(x) + d[ω0(x)n̂(x, s)]

dx
= 0. (3.2)

It should be noted thatn(x, θ) is defined mathematically
for x ∈ (−∞,∞) even though, for kinetic purposes,
only positive values ofx admit a physical meaning. Con-
sequently, Eq. (3.2) is not equipped with any boundary
condition, and the regularity of the solution should be only
enforced for|x| → ∞.

The introduction of the auxiliary functiong(x, s) =
ω0(x)n̂(x, s) causes Eq. (3.2) to take the following form:

dg(x, s)

dx
= − s

ω0(x)
g(x, s) + n0(x), (3.3)

the general solution of which is given by

g(x, s) = C exp

(
−s

∫ x

0

dz

ω0(z)

)

+
∫ x

0
n0(y)exp

(
−s

∫ x

y

dz

ω0(z)

)
dy. (3.4)

Due to the regularity condition for|x| → ∞, the constant
C is identically vanishing, so that the Laplace transform of
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n(x, θ) is given by

n̂(x, s) = 1

ω0(x)

∫ x

0
n0(y)exp[−s(h(x) − h(y))] dy,

(3.5)

where

h(x) =
∫ x

0

dz

ω0(z)
. (3.6)

The inverse Laplace transform of Eq. (3.5) attains the
following form:

n(x, θ) = 1

ω0(x)

∫ x

0
n0(y)δ(θ − h(x) + h(y))dy

= ω0(h
−1(h(x) − θ))

ω0(x)
n0(h

−1(h(x) − θ)), (3.7)

whereh−1 is the inverse of the monotonic functionh(x) de-
fined by Eq. (3.6), andδ(x−xc) is Dirac’s delta-distribution
centered atx = xc. Eq. (3.7) is the formal general solution
of Eq. (2.8). The following section addresses some specific
cases of kinetic interest.

4. Examples and discussion

This section develops several particular cases of the appli-
cation of Eq. (3.7), also extending the analysis to nonlinear
kinetics.

4.1. First-order kinetics

For a first-order kinetics, the auxiliary functionh(x) is
given by

h(x) = −
∫ x

0

[
1 + ξ

xD(2 + √
ξ/xv)

]
dξ

= −x − 2
√
xv

xD

[
x3/2

3
− x

√
xv + 4xv

√
x

−8x3/2
v log

(√
x + 2

√
xv

2
√
xv

)]
. (4.1)

Several cases are of interest. The limitxD → ∞ corresponds
to kinetic control. In this case,ω0 = −1, h(x) = h−1(x) =
−x, so that Eq. (3.7) becomes

n(x, θ) = n0(x + θ). (4.2)

The initial distribution translates in a parallel way along the
x-axis towards lower values ofx as time increases. If it
possesses initial radii lower than a prescribed valuexm, i.e.
if n0(x) admits a compact support (n0(x) = 0 for x > xm),
complete consumption occurs forθ > xm.

Another particular case of interest is that of creeping-flow
conditions, corresponding toRe → 0 andxv → ∞. In this

case,ω0(x) = −(1 + x/2xD)−1 and

h(x) = −
(
x + x2

4xD

)
,

h−1(x) = −2xD + [4x2
D − 4xDx]1/2, (4.3)

so that

h−1(h(x) − θ) = −2xD + [(x + 2xD)2 + 4xDθ ]1/2. (4.4)

The substitution of Eq. (4.4) into Eq. (3.7) yields

n(x, θ) = 2xD + x

[(x + 2xD)2 + 4xDθ ]1/2

×n0(−2xD + [(x + 2xD)2 + 4xDθ ]1/2), (4.5)

which was obtained by Le Blanc and Fogler [16] in the
particular case of an initial log-normal distribution.

In the general case of a first-order dissolution kinetics,
the expression for the inverse functionh−1(x) entering into
Eq. (3.7) cannot be made explicit. This is, however, a minor
issue sinceh−1 can be obtained from Eq. (4.1) by points
and, upon interpolation, substituted into Eq. (3.7).

Throughout this paper, we consider an initial distribu-
tion possessing a bounded maximum radiusrmax, such that
n0(r) = 0 for r > rmax. In this case, the reference radiusrref
can be chosen to be equal tormax, so thatn0(x) is different
from zero in the unit intervalx ∈ [0,1]. This means that
h : [0,1] → [−H,0], whereH > 0 andh−1 : [−H,0] →
[0,1]. The assumption of compact support of the initial dis-
tribution, which is wholly reasonable in all the cases of phys-
ical interest, simplifies the computation of Eq. (3.7) since
both the auxiliary functionsh andh−1 can be tabulated on
an arbitrarily fine grid and stored in an array structure, thus
simplifying the computation of the quantityh−1(h(x) − θ)

in all the cases where it is impossible to express eitherh or
h−1 or both of them by means of elementary functions.

As a case study, we consider an initial particle population
distributed according to a modified Gamma distribution:

n0(x) =
{

Cxν0(1 − x)ν1 exp(−βx), x ∈ [0,1],

0 elsewhere,
(4.6)

where ν0 > −1, ν1 > 0, β > 0, andC > 0, which is
very flexible and gives rise to a broad phenomenology of
initial distributions by changingν0, ν1 andβ. This distri-
bution vanishes forx = 1, and forx = 0 if ν0 > 0. If
ν0 > 0, this class of functions possesses unimodular be-
havior characterized by a single local maximum centered
at x∗

0 = (β + ν0 + ν1 −
√
(β + ν0 + ν1)2 − 4βν0)/2β.

The prefactorC depends on the total volume (mass) of the
particle ensemble. Henceforth, we assume

C = C0

[∫ 1

0
xν0+3(1 − x)ν1 exp(−βx)dx

]−1

(4.7)

for a fixed value of the constantC0, sayC0 = 1, which
ensures an overall dimensionless mass equal to1

34πρsC0.
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Fig. 1. Particle distributionn(x, θ) at several time instants (sampling time&θ ) for ν0 = 2, ν1 = 1, β = 10 (distribution I) andxv = 1. The bold line
corresponds to the initial distribution. The arrow indicates increasing values of timeθ spanning the conversion range fromX = 0 to about 0.98: (A)
xD = 1, &θ = 10−1; (B) xD = 10−1, &θ = 10−1; (C) xD = 10−2, &θ = 1.

The dissolution kinetics depends on two parameters,xD
andxv, corresponding to the reciprocal of effective square
Thiele and Reynolds numbers, and on the shape of the initial
distribution function.

We consider two characteristic shapes of the initial dis-
tribution: the case of an initial mixture formed by relatively
small particles in relation to the reference radiusrref, cor-
responding toν0 = 2, ν1 = 1 andβ = 10 (henceforth re-
ferred to as distribution I) and the opposite case of an initial
ensemble essentially composed of large particles and corre-
sponding toν0 = 10,ν1 = 1 andβ = 2 (henceforth referred
to as distribution II).

Let us first consider the influence ofxD for a fixed value
of xv = 1. Figs. 1 and 2 show the behavior of the particle
distribution function forxD = 1(A),10−1 (B) and 10−2 (C),
respectively, for distributions I and II. The distributions are
sampled at constant time intervals&θ , depending onxD, in
such a way that the most significant range of conversions
X from 0 up to 0.98, is covered. The initial distribution is
shown by a bold line.

In the casexD = 1 (part A of Figs. 1 and 2), both dis-
tributions translate towards lower values ofx as the height
of the local maximum gradually decreases. ForxD = 1, the

Fig. 2. Particle distributionn(x, θ) at several time instants forν0 = 10, ν1 = 1, β = 2 (distribution II) andxv = 1. The bold line corresponds to the initial
distribution. The arrow indicates increasing values of timeθ spanning the conversion range fromX = 0 to about 0.98: (A)xD = 1, &θ = 2 × 10−1;
(B) xD = 10−1, &θ = 4 × 10−1; (C) xD = 10−2, &θ = 2.

characteristic times for reaction and mass transfer are com-
parable to each other, and the behavior ofn(x, θ) is qual-
itatively close to the case of strict kinetic control,xD →
∞, Eq. (4.2), corresponding to a rigid translation ofn(x, θ)

along thex-axis.
By decreasingxD, the process becomes progressively

controlled by external mass transfer (parts B and C of
Figs. 1 and 2). The casexD = 10−2 is particularly inter-
esting. Distribution I (Fig. 1C) qualitatively follows the
behavior observed by Le Blanc and Fogler for a log-normal
distribution in the mass-transfer controlled case, as was to
be expected because distribution I and the log-normal distri-
bution are fairly similar. Phenomenologically, the abscissa
x∗(θ) at whichn(x, θ) attains its absolute maximum does
not move appreciably away from its initial locationx∗

0, at
least for values of the conversion up toX = 0.98, and the
whole distribution sinks progressively. Conversely, distri-
bution II displays a complete different behavior (Fig. 2C):
the distribution translates towards lower values ofx, and so
doesx∗(θ) starting from a value close to 1 up to 0.

The behavior of the distribution dynamics can be de-
scribed in a lumped way by considering the time-behavior
of x∗(θ), the abscissa of the absolute maximum. It is
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convenient to introduce an approximation, valid exclusively
in the mass-transfer controlled case, by assumingx/xD ≥ 1
and overlooking the contribution due to agitationxv → ∞.
The first inequality is intrinsically an approximation that
fails for very small particlesx � xD. If xD is small enough,
however, the contribution on left-hand side tail of the distri-
bution to the overall dynamics is fairly negligible. On this
assumption, the dimensionless shrinking velocity becomes
ω(x) = −[x/2xD]−1, and h(x) = −x2/4xD, h−1(x) =√−4xDx and α(x, θ) = h−1(h(x) − θ) =

√
x2 + 4xDθ .

Eq. (3.7) thus becomes

n(x, θ) = x√
x2 + 4xDθ

n0

(√
x2 + 4xDθ

)

= xn0(α(x, θ))

α(x, θ)
. (4.8)

The positionx∗(θ) of the maximum fulfills the condition
(∂n(x, θ)/∂x)|x=x∗(θ) = 0. By applying Eq. (4.8), this con-
dition can be expressed with respect to the auxiliary function
α as follows:

4xDθ + (α∗2 − 4xDθ)α∗ dlogn0(α)

dα

∣∣∣∣
α=α∗

= 0, (4.9)

wherex∗2 = α∗2 − 4xDθ , i.e.

4xDθ = α∗3 dlogn0(α
∗)/dα

α∗ dlogn0(α∗)/dα − 1
, (4.10)

where dlogn0(α
∗)/dα = dlogn0(α)/dα|α=α∗ . Eq. (4.10)

can be used to determine the position of the maximum quite
simply since it returns the graph ofθ vs. α∗. By enforcing
the definition ofx∗ as a function ofα∗ andθ , the graph of
x∗ vs.θ is readily obtained. Fig. 3 shows the graph ofx∗(θ)
vs. the conversionX(θ) obtained from Eq. (4.10) for the
approximate model and compared with the maxima of the
complete solution (in which no approximations are made)
in the case of the two distributions considered.

Fig. 3. x∗ vs. conversionX. (A) Initial distribution I: (a) xv = 1, xD = 10−2; (b) xv = 10, xD = 10−2; (c) xv = 103, xD = 10−2; (d) xv = 103,
xD = 10−3; (e) Eq. (4.10). (B) Initial distribution II. The solid line corresponds to Eq. (4.10) and the dots refer toxv = 1, xD = 10−2.

This representation of distribution dynamics is particu-
larly convenient for analyzing experimental data since both
x∗ andX are experimentally measurable quantities.

As can be observed, distribution I forxD = 10−2 and
xv = 1 (curve a of Fig. 3A) is characterized by a highly
nonmonotonic behavior ofx∗(θ) as a function of the
conversionX(θ). For smallX < 0.4, x∗ decreases as a
function of the conversion, reaches a local minimum, and
then increases untilX reaches values close to 1. Near
complete solid consumption, there is a sudden collapse
of x∗ up to x∗ = 0. The excursion range over whichx∗
varies is, however, a narrow interval centered at the initial
valuex∗

0, for X in the interval [0,0.99]. The approximate
model equation (4.10) (curve e in Fig. 3) possesses the
same qualitative behavior, although the values attained by
x∗ are different. This is quite reasonable since Eq. (4.10)
holds in the limit ofxv → ∞ and for small values ofxD.
As shown by curves (b)–(d) of Fig. 4, the results obtained
by decreasingxD and increasingxv approach curve (e),
i.e. Eq. (4.10).

Fig. 3B shows the dynamics ofx∗ for distribution II. The
solid curve refers to Eq. (4.10), while dots are the values
pertaining to the nonapproximate solution forxD = 10−2

andxv = 1. In this case,x∗ is a strictly monotonically de-
creasing function ofX tending to 0 forX → 1, thus con-
firming the qualitative behavior ofn(x, θ) shown in Fig. 2C.
In the case of distribution II, the behavior atxD = 10−2 and
xv = 1 is already practically indistinguishable from the ap-
proximate solution equation (4.10), and a further increase in
xv and/or decrease inxD makes no appreciable difference to
the dynamics of the particle ensemble.

These results demonstrate that the dynamics of particle
distributions in the mass-transfer controlled case may give
rise to a rich phenomenology that is strongly dependent on
the shape of the initial distribution function.

Incidentally, Fig. 3 also addresses the influence ofxv
on the dynamics of distribution function. This parameter
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Fig. 4. Conversion–time curves forxv = 1 (continuous lines), andxv = 10−2 (dotted lines). (A) Initial distribution I: (a) and (b)xD = 10−2; (c) and (d)
xD = 10−1; (e) xD = 1. (B) Initial distribution II: (a) and (b)xD = 10−2; (c) and (d)xD = 10−1; (e) xD = 1.

takes into account the effect of agitation—as it regards mass
transfer—on the dissolution behavior.

Elementary physical considerations and order of magni-
tude analyses suggest that the influence ofxv becomes more
significant for small values ofxD, i.e. in the mass-transfer
controlled case, since the effect of agitation may com-
pensate the low value of diffusivity, thus increasing mass
transfer. This phenomenon is shown in Fig. 4A and B for
distributions I and II, respectively, by considering the over-
all conversion–time curve. The solid lines refer toxv = 1
and the dotted lines toxv = 10−2.

For high values ofxD ≥ 1, corresponding to the reaction
controlled case, and up to the conditionxD 	 1, at which
the characteristic time for reaction and mass transfer are of
the same order of magnitude, the influence ofxv is negli-
gible. Curve (e) shows the almost perfect matching of the
conversion–time curves forxv = 1 and 10−2. For lower val-
ues ofxD, the effects of agitation cannot be overlooked. For
example, for distribution II atxD = 10−2 (Fig. 4B, curves a
and b), there is a difference of almost one order of magni-
tude in the value of the time required to achieve conversion
of X = 0.95 by changingxv from 1 to 10−2.

4.2. Nonlinear dissolution kinetics

The case of a nonlinear dissolution kinetics makes no
significant difference to the formal structure of the solution
expressed by Eq. (3.7) for a first-order kinetics. To show
this, we consider annth order elementary reaction, although
the same approach can be extended to any form of rate law.

For annth order kinetics, the surface concentrationcA,s
can be obtained from the balance equation

km(cA − cA,s) = k̃rc
n
A,s, (4.11)

i.e.

yA − yA,s = φ2yn
A,s, (4.12)

whereφ2 = k̃rc
n−1
A,0 /km is the square surface Thiele number.

Eq. (4.12) can be made explicit with respect toyA,s:

yA,s = ψ(yA;φ2), (4.13)

although the expression for the functionψ cannot be made
explicit through elementary functions. The substitution of
Eq. (4.13) into Eq. (2.1) yields

dx

dθ
= −ψn(yA , φ2), (4.14)

where the surface Thiele number depends onx because of
Eq. (2.4):

φ2 = x/xD

2 + √
x/xv

, (4.15)

where for annth order kinetics,xD = D/2k̃rc
n−1
A,0 rref.

Fig. 5. Conversion–time curves for distribution I in the mass-transfer
controlled regime (xD = 10−2, xv = 1) for increasing values of the order
of reactionn = 1,2,3 (indicated by the arrow). The inset shows the
corresponding behavior of−ω = −ω0(x).
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If there is a large surplus of fluid reactant with respect to
the solid,yA 	 1 and Eq. (4.14) becomes

dx

dθ
= ω0(x) = −ψn

(
1,

x

xD(2 + √
x/xv)

)
. (4.16)

This means that the formal closed-form solution of the
population-balance equation is identical to the case of a
first-order kinetics, with the only difference that the dimen-
sionless shrinking velocity is now expressed by Eq. (4.16).

Fig. 5 shows the conversion–time curves and the
corresponding shrinking velocity profilesω0(x) in the
diffusion-controlled regime (xD = 10−2, xv = 1) for distri-
bution I andn = 1,2,3. As expected, for fixedxv andxD,
the reaction becomes slower as the order of the reaction
increases.

5. Warped time and the influence of fluid
reactant concentration

In the case where there is no surplus of the fluid reactant
A with respect to the solid, its concentration decreases pro-
gressively during the reaction, thus influencing the dissolu-
tion process. In this case, the resulting population-balance
equation is no longer linear and attains the form of a non-
linear functional equation, as discussed in Section 2.

From Eqs. (2.8), (2.9) and (2.12), it follows that the
governing equation expressing the time evolution of the
distribution function is given by

∂n(x, θ)

∂θ
+ yA(θ)

∂[ω0(x)n(x, θ)]

∂x
= 0, (5.1)

whereyA(θ) depends exclusively on timeθ and is given by
Eq. (2.12).

The particular functional form of Eq. (5.1) is suitable
for approach by means of a warped-time transformation.
Warped-time transformations are widely adopted in reaction
engineering, e.g. in connection with the kinetics of contin-
uous mixtures [17,18], and for analyzing the dynamics of
lamellar systems in order to model the influence of mixing
and/or premixing conditions on the reaction evolutions in
stirred systems [19,20].

Let us introduce the following warped-time transforma-
tion:

τw =
∫ θ

0
yA(θ ′)dθ ′ = Fw(θ), (5.2)

so that Eq. (5.1) becomes formally identical to Eq. (2.8):

∂nw(x, τw)

∂τw
+ ∂[ω0(x)nw(x, τw)]

∂x
= 0, (5.3)

wheren(x, θ) = nw(x,Fw(θ)), and the solution of which
is still given by Eq. (3.7).

In order to get the proper time parameterization, Eq. (5.2)
should be inverted. Since
dθ

dτw
= 1

yA(θ)
, (5.4)

Fig. 6. Log–log plot of the physical timeθ vs. the warped timeτw for the
two initial distributions I (bundle of curves a) and II (bundle of curves b)
in the stoichiometric caseγA = 1 and diffusion-controlled regime
xD = 10−2, xv = 1. The arrows indicate increasing values of the order
of reactionn = 1,2,3. The dotted line (curve c) represents the linear
behaviorθ = τw.

it follows that:

θ =
∫ τw

0

{
1 − γA

[
1 −

∫∞
0 x3nw(x, τ ′

w)dx∫∞
0 x3n0(x)dx

]}−1

dτ ′
w

=
∫ τw

0

dτ ′
w

1 − γAX(τ ′
w)

= F−1
w (τw), (5.5)

the inverse of which gives the proper relation between the
warped timeτw and the physical timeθ .

The influence of the fluid reactant A depends on the pa-
rameterγA. WhileγA = 1 corresponds to the stoichiometric
conditions of initial loading,γ → 0 is the limit case of an
overwhelming surplus of fluid reactant with respect to the
solid.

Fig. 6 shows the behavior of the physical timeθ vs. the
warped timeτw for the two initial distributions considered
above, for different orders of reaction, and for different load-
ing conditions (values ofγA). The most critical case, i.e.
stoichiometric loadingγA = 1, leads to an infinite time
for complete particle consumption and corresponds to the
vertical asymptotes for the curves of bundles (a) and (b)
in Fig. 6. Obviously, the slower the particle consumption
is, the higher the value of the corresponding warped time
τ ∗

w at which θ(τw) starts to deviate from the linear behav-
ior θ = τw (dotted curve c) corresponding toγA = 0.
Consequently,τ ∗

w increases withγA and is larger in the
case of distribution II, characterized by an initial ensem-
ble of large particles, and for a high value of the order of
reactionn.

To conclude, there is no further peculiar complexity in
approaching the case of limiting fluid reactants other than
the fact that the relation between the physical time and the
warped time should be enforced through Eq. (5.5).
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6. Concluding remarks

This paper develops a closed-form solution of the
population-balance equation expressing the dissolution of a
polydisperse mixture of nonporous solid particles.

For dissolution kinetics in the presence of excess fluid
reactants, the formal solution of the population balance is
given by Eq. (3.7). A simple closed-form solution can be
obtained in the case of a first-order kinetics for a generic
initial distribution and for any values of the parameterxD
andxv. In the more general case, e.g. for nonlinear kinetics,
the expression for the auxiliary functionh(x) and for its
inverse entering into Eq. (3.7) can be computed once and
for all and the evolution of the distribution function can be
obtained with arbitrary numerical accuracy by substitution
into Eq. (3.7).

The influence of the physical and operating conditions is
thoroughly discussed. Specifically, the mass-transfer con-
trolled regime displays a manifold of different features
that depend intrinsically on the initial particle distribution
function. Essentially, mixtures of large and small particles
(where “large” and “small” have a relative meaning in re-
lation to rref), behave differently, and the dynamics of the
particle mixture in the case of initially unimodular dis-
tributions can be conveniently described by means of the
peak-location/conversion curve (x∗ vs. X), which is also
easy to obtain directly from the experimental granulometric
and kinetic data.

If the bulk fluid reactant concentration does change in
time, i.e. if there is not a large surplus of fluid reactant, the
resulting population-balance equation becomes a nonlinear
functional equation, the solution of which can still be ob-
tained by applying Eq. (3.7) with a suitable warped-time
transformation, as discussed in Section 5.

In many dissolution processes, the reaction kinetics
is intertwined with particle fragmentation. The mathe-
matical modeling of fragmentation processes leads to an
integro-differential population-balance equation [21,22]:

∂n(x, θ)

∂θ
+ ∂[ω(x)n(x, θ)]

∂x

= −a(x)n(x, θ) +
∫ ∞

x

a(y)b(x; y)n(y, θ)dy, (6.1)

wherea(x) is the fragmentation rate depending on the di-
mensionless radiusx andb(x; y) the number of fragments
of radiusx generated from a particle of radiusy.

Despite the formal analogy with mechanical fragmen-
tation, the phenomenon of particle fragmentation during
chemical dissolution admits it own peculiarities, for the rea-
son that particle break-up is essentially a consequence of the
kinetics itself rather than of mechanical factors controlling
grinding and milling processes. This limits the application
of the existing expressions for the fragmentation functions
a(x) andb(x; y) adopted in the description of mechanical
fragmentation (abrasion, cleavage and fracture) [23,24], and

of the existing closed-form solutions for Eq. (6.1), which
either holds forω(x) = 0 [25,26] or applies for simplified
expressions forω(x), a(x), b(x, y) [21,22].

It is important to point out that a general closed-form solu-
tion for the resulting integro-differential population-balance
equation occurring in dissolution fragmentation is difficult to
obtain. An efficient computational way to tackle the problem
is to make use of spectral (Galërkin) expansions with respect
to a complete system of orthonormal basis functions [27],
thus reducing the population-balance equation to a system
of linear ordinary differential equations. The analysis of dis-
solution kinetics under fragmentation lies beyond the scope
of this paper and will thus be developed elsewhere [28].
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